🧠 STARKLANG — LLM Integration Interface Specification
(Jarvis Protocol – Conversational AI & Code-Augmenting Model Runtime)
This document defines the native integration spec for Large Language Models (LLMs) in STARKLANG — enabling programmable, embedded AI orchestration, semantic command interfaces, and self-augmenting code intelligence via the Jarvis Runtime Layer.
📌 Vision Statement
STARKLANG must treat AI models like functions, not black boxes.
- LLMs are callable compute units
- Prompting is just another function call
- AI inference is streamable, composable, and observable
- The language becomes self-aware, self-reasoning, and self-scaling
📐 Design Philosophy
Principle |
Strategy |
Prompt-as-code |
@llm block or llm.call() |
Modular model interface |
LLMClient abstraction |
Multi-model compatible |
OpenAI, Claude, local, custom |
AI orchestration DSL |
Streaming prompt pipelines |
Code intelligence loop |
Self-reflective Jarvis runtime layer |
🧠 Core Constructs
✅ 1️⃣ LLM Client Interface
let model = LLMClient(provider="openai", model="gpt-4")
let response = model.prompt("Summarize this text", context=article)
Method |
Description |
.prompt(query, context?) |
One-shot prompt |
.stream(query) |
Token-wise streaming |
.chain(prompts) |
Multi-stage prompt chaining |
.call_prompt(promptBlock) |
Executes inline @llm block |
✅ 2️⃣ @llm
Block Syntax
@llm as summarize:
system: "You are a summary assistant"
user: "Summarize the following: {{text}}"
Usage:
let summary = summarize.call({ text: document })
✅ 3️⃣ Prompt Pipeline DSL
pipeline summarize_and_tag:
@llm as summarize:
user: "Summarize this: {{input}}"
@llm as tagger:
user: "Generate keywords for: {{input}}"
summarize_and_tag.run(input=document)
✅ 4️⃣ Semantic Prompt Macros
@llm as refactor:
user: "Refactor this code: {{code}}"
let result = refactor.call({ code: my_code_block })
✅ 5️⃣ Tool-augmented Prompt Agents
@llm as code_critic:
tools = [linter.suggest, profiler.summary]
user: "Analyze this code and apply tools: {{code}}"
🔌 Runtime LLM Router
Feature |
Description |
Multi-provider abstraction |
OpenAI, Anthropic, Local LLMs |
Model fallback logic |
Retry chains, routing logic |
Token budget aware |
Auto-truncate large prompts |
Streaming hooks |
Token-by-token event handlers |
📦 Example: Embedded LLM Copilot
@llm as assistant:
system: "You are a developer assistant"
user: "{{query}}"
fn handle_user_input(text: String):
let reply = assistant.call({ query: text })
print(reply)
📊 Observability Hooks
- trace_prompt()
- emit_llm_metric(tokens, duration)
- log_llm_call(name, model, tokens)
🔐 Security Considerations
Concern |
Mitigation |
Prompt injection |
Linter & sandbox prompt templates |
Token cost audit |
Model budget reporter |
Data leakage |
Local model fallback, inline redaction filters |
🔮 Jarvis Runtime Protocol (Advanced)
Layer |
Description |
Prompt Resolver |
Unifies block + dynamic prompting |
AI Planner |
Chains & orchestrates LLM tools |
Semantic AST Interpreter |
Understands code intent, passes to LLM |
Reflection Engine |
Lets code analyze & mutate itself |
🔥 Jarvis AI Orchestration Primitives (Future-Ready Concepts)
Primitive |
Description |
@self_reflect |
Code that analyzes itself and re-invokes |
@intent_map |
Auto-link prompts to code behavior |
@plan_execution |
AI agent decides optimal execution path |
@jarvis_callstack |
AI agent traces semantic call chain |
✅ Summary
Feature |
Status |
LLMClient Interface |
✅ Designed |
@llm Block Syntax |
✅ Specified |
Prompt Pipeline DSL |
✅ Drafted |
Runtime Router |
✅ Designed |
Tool-Augmented Agents |
✅ Designed |
Jarvis Reflection Engine |
⏳ Future |
Patent-Worthy Concepts |
✅ Ready |
STARKLANG's Jarvis Protocol enables self-augmenting codebases and programmable AI-nativeness, making it the world's first truly intelligent programming language.