🤖 STARK Language — Core AI Types Specification
This document defines the fundamental AI/ML data structures in STARKLANG. These are not extensions but core language primitives, designed to make AI deployment efficient, safe, and expressive.
📦 Core AI Types
1️⃣ Tensor<T>[...Shape] - Core Primitive
The fundamental data structure for all AI computations in STARK.
let features: Tensor<Float32>[batch, 128]
let weights: Tensor<Float32>[128, 10]
let image: Tensor<UInt8>[3, 224, 224]
Compile-Time Shape Safety:
- Shape mismatches caught at compile time
- Automatic shape inference in operations
- Zero-cost abstractions for tensor operations
Core Methods:
tensor.shape() -> [Int; N] // Compile-time known shape
tensor.matmul(other: Tensor<T>[M, K]) -> Tensor<T>[N, K]
tensor.map(fn: T -> U) -> Tensor<U>[...Shape]
tensor.reduce_sum(axis: Int) -> Tensor<T>[...ReducedShape]
Memory Layout:
- Contiguous memory with configurable layouts (row-major, column-major)
- GPU memory support with automatic transfers
- Zero-copy views and slicing
2️⃣ Dataset<T> - Streaming Data Pipeline
Efficient, lazy-evaluated data processing for AI workflows.
let train_data: Dataset<(Tensor<Float32>[128], Int32)>
let images: Dataset<Tensor<UInt8>[3, 224, 224]>
Pipeline Operations:
dataset
.batch(32) // Create batches
.map(|x| preprocess(x)) // Transform data
.shuffle(1000) // Shuffle with buffer
.prefetch(4) // Async prefetching
Memory Efficiency:
- Lazy evaluation - only process when consumed
- Streaming from disk/network without loading everything
- Automatic memory management for large datasets
- GPU pipeline support for zero-copy transfers
3️⃣ Model<Input, Output> - Inference Engine
Type-safe model abstraction with shape validation and performance optimization.
let classifier: Model<Tensor<Float32>[batch, 128], Tensor<Float32>[batch, 10]>
let embedder: Model<Vec<String>, Tensor<Float32>[batch, 384]>
Model Loading:
let model = load_pytorch_model("classifier.pt") // Automatic shape inference
let onnx_model = load_onnx_model("model.onnx")
let huggingface_model = load_hf_model("bert-base-uncased")
Inference Methods:
model.predict(input: Input) -> Output
model.batch_predict(inputs: Vec<Input>) -> Vec<Output>
model.stream_predict(inputs: Dataset<Input>) -> Dataset<Output>
Performance Features:
- Automatic batching for throughput optimization
- Device placement (CPU/GPU) with automatic transfers
- Model quantization and compression
- Execution profiling and optimization hints
🧠 Supporting Types (Future Extensions)
LossFunction
: e.g.,CrossEntropy
,MSE
Optimizer
: e.g.,SGD
,Adam
MLGraph
: DAG of models/operatorsMetric
: Evaluation and scoring abstractions
✨ AI Type Design Philosophy
Goal | Mechanism |
---|---|
Type Safety | Shape-checked tensors |
Performance | Backend-neutral tensor engine |
Composability | Pipelines, map/filter DSL |
Portability | Export to ONNX, deploy as service |
ML-Native Semantics | Model + Dataset + Pipeline cohesion |
📌 Example: Complete AI Deployment Pipeline
// Load pre-trained model with automatic shape inference
let model = load_pytorch_model("sentiment_classifier.pt")
// Type: Model<Tensor<Float32>[batch, 512], Tensor<Float32>[batch, 3]>
// Create streaming data pipeline
let text_stream: Dataset<String> = load_text_stream("reviews.jsonl")
let processed = text_stream
.map(|text| tokenize_and_embed(text)) // String -> Tensor<Float32>[512]
.batch(32) // Batch for efficiency
.prefetch(2) // Async prefetching
// Run inference with automatic batching
for batch in processed {
let predictions = model.predict(batch) // Tensor<Float32>[32, 3]
let labels = argmax(predictions, axis=1) // Tensor<Int32>[32]
// Process results
for (text, label) in zip(batch.unbatch(), labels.unbatch()) {
handle_classification(text, label)
}
}
These core AI types make STARK uniquely suited for production ML deployment, providing type safety, performance optimization, and seamless integration with existing ML ecosystems. They are fundamental language primitives, not library additions, enabling compile-time optimizations and safety guarantees that are impossible in general-purpose languages.
🧱 STARK Language — Advanced & Future-Oriented Types
This document outlines additional powerful types in STARKLANG designed for safety, flexibility, and next-gen programming paradigms. These types enhance developer ergonomics, ensure runtime robustness, and support emerging paradigms such as functional programming, streaming data, and safe concurrency.
✅ 1. Option
A type-safe replacement for null. Guarantees explicit handling of absent values.
let maybe_user: Option<UserProfile> = None
Variants:
enum Option<T>:
Some(value: T)
None
Methods:
.is_some()
.unwrap()
(with panic fallback).unwrap_or(default: T)
.map(fn)
✅ 2. Result<T, E>
Robust error handling and propagation using algebraic types.
fn divide(a: Float32, b: Float32) -> Result<Float32, String>:
if b == 0.0:
return Err("Division by zero")
return Ok(a / b)
Variants:
enum Result<T, E>:
Ok(value: T)
Err(error: E)
Methods:
.is_ok()
,.is_err()
.unwrap()
,.unwrap_or()
.map(fn)
,.map_err(fn)
🔷 3. Union<T1 | T2 | ...>
A flexible type that can hold one of several types.
let mixed: Union<Int | Float32 | String>
Handled via pattern matching:
match mixed:
Int(i): print("Int: " + str(i))
Float32(f): print("Float: " + str(f))
String(s): print("String: " + s)
🔷 4. Stream
A lazy, async-capable, chainable data processing abstraction.
let stream: Stream<Int> = range(0, 100)
.map(fn(x) => x * x)
.filter(fn(x) => x % 2 == 0)
Methods:
.map(fn)
,.filter(fn)
.reduce(fn, init)
.collect()
Supports both lazy evaluation and stream-based pipelines.
🔷 5. TaggedRecord
Schema-aware struct with tagged metadata.
record Invoice:
id: String @tag("primary")
total: Float32 @tag("currency:USD")
Useful for serialization, schema validation, and ETL/data pipelines.
⚪ 6. Ref / Pointer
Low-level reference to memory-allocated object (useful for FFI/systems integration).
let ptr: Ref<UserProfile> = ref user
Supports dereferencing, pointer equality, and pass-by-ref semantics.
⚪ 7. Bitfield
Compact bit-based flag structures for systems/embedded use.
bitfield Flags:
READ: 0
WRITE: 1
EXEC: 2
Bitwise manipulation: flags.set(READ)
, flags.has(EXEC)
⚪ 8. Persistent Collections
Immutable data structures for functional-style programming.
PersistentList<T>
PersistentMap<K, V>
Enable structural sharing and safe concurrent reads.
⏳ 9. Channel
Concurrency primitive for actor systems, thread isolates, and message-passing models.
let ch: Channel<Int> = channel()
spawn fn producer():
ch.send(42)
let val = ch.recv()
⏳ 10. Future
Async task result holder, supports chaining and callbacks.
let result: Future<Int> = async fn compute(): return 99
Support methods:
.await()
.then(fn)
.catch(fn)
These types extend STARKLANG's capability beyond a typical language into a developer-first, AI-native, concurrency-safe ecosystem—built for the real-world challenges of the future.