🧠 STARKLANG β€” AI Concurrency Primitives Specification

STARKLANG's concurrency model is designed specifically for AI workloadsβ€”batch processing, parallel inference, and multi-model serving.

This spec defines the core concurrency primitives optimized for tensor operations, model serving, and AI pipeline execution.

πŸ“Œ AI-Focused Design Philosophy

Goal Mechanism
Batch processing Parallel tensor operations
Model serving Async inference with batching
Multi-model workflows Actor-based model isolation
Memory safety Tensor ownership in concurrent contexts
Performance GPU-aware scheduling, zero-copy operations

πŸ”Ή Core Concurrency Constructs

βœ… 1️⃣ async Functions

async fn fetch_data(url: String) -> Response:
    let result = http.get(url)
    return result

βœ… 2️⃣ await Expression

let response = await fetch_data("https://api.stark.ai")

βœ… 3️⃣ Future<T>

let future: Future<Int> = async fn compute(): return 99

Methods:

  • .await()
  • .then(fn)
  • .catch(fn)

βœ… 4️⃣ spawn β€” Lightweight Task Creation

spawn fn worker(task_id: Int):
    compute(task_id)

let handle = spawn compute_task()
let result = handle.join()

πŸ”€ AI Parallel Patterns

βœ… parallel_inference(model, batches)

let batches: Vec<Tensor<Float32>[32, 128]> = dataset.batch(32)
let results = parallel_inference(model, batches)

βœ… parallel_tensor_map(fn, tensor)

let normalized = parallel_tensor_map(normalize_fn, large_tensor)

Other AI patterns:

  • parallel_model_ensemble(models, input)
  • parallel_preprocess(data_loader, transforms)

πŸ”„ Concurrency Control

βœ… Channels

let ch: Channel<Int> = channel()

spawn fn producer():
    ch.send(42)

let result = ch.recv()

Channel Types:

  • Channel<T>
  • BroadcastChannel<T>
  • Select support (planned)

🧠 AI Model Actor System

βœ… Defining a Model Actor

actor ModelServer:
    model: Model
    mut request_count: Int = 0

    fn on_receive(input: Tensor<Float32>) -> Tensor<Float32>:
        request_count += 1
        return model.predict(input)

βœ… Multi-Model Serving

let classifier = spawn_actor(ModelServer::new(load_model("classifier.pt")))
let generator = spawn_actor(ModelServer::new(load_model("generator.pt")))

let classification = classifier.ask(features).await
let generation = generator.ask(prompt_embeddings).await

βœ… ModelActorRef<Input, Output> API

  • ask(input: Input) -> Future<Output>
  • batch_ask(inputs: Vec<Input>) -> Future<Vec<Output>>
  • get_stats() -> ModelStats

⚠ Error Handling & Fault Isolation

  • Actor supervision trees (planned)
  • Try/Catch inside async blocks
  • Actor panics are isolated

πŸ”’ Shared Memory Zones (Advanced / Optional)

shared let zone: SharedMap<String, Float32>

Access via .lock(), .read(), .write().

πŸ“Š Execution Runtime Architecture

Component Role
Task Scheduler Runs async tasks
Actor Registry Tracks actor lifecycles
Mailbox Engine Routes messages
Channel Multiplexer Manages select logic
Runtime Profiler Tracks task/actor metrics

βš™ Compiler Safety Checks

Feature Enforcement
Shared Memory Mutation Borrow checker
Concurrent &mut Access Compile-time rejection
Unawaited Future Warning/Error
Deadlocks Static analysis (planned)

πŸ“Œ Full Example: AI Inference Pipeline

actor InferenceService:
    classifier: Model
    embedder: Model
    
    fn on_receive(text: String) -> ClassificationResult:
        let embeddings = embedder.predict(tokenize(text))
        let logits = classifier.predict(embeddings)
        return ClassificationResult::new(softmax(logits))

let service = spawn_actor(InferenceService::new(
    load_model("embedder.pt"),
    load_model("classifier.pt")
))

let texts: Vec<String> = load_text_batch()
let results = parallel_map(texts, |text| service.ask(text).await)

πŸ›  AI Concurrency Tools (Planned)

Tool Description
Model Profiler Track inference latency and throughput
Batch Optimizer Suggest optimal batch sizes
Memory Visualizer Tensor memory usage across actors
GPU Utilization Monitor Track device usage

βœ… Summary: AI Concurrency Features

Feature Supported
async/await for model serving βœ…
parallel_inference βœ…
parallel_tensor_map βœ…
Model Actor system βœ…
Batch processing βœ…
Multi-model workflows βœ…
GPU-aware scheduling ⏳ Planned
Dynamic batching ⏳ Planned

STARKLANG is now equipped to deliver safe, scalable, AI-optimized concurrencyβ€”ready for production ML serving, batch processing, and intelligent inference pipelines.