Overview

STARK employs a hybrid memory management system that combines ownership-based memory safety with garbage collection for high-level objects, optimized specifically for AI/ML workloads.

Memory Management Strategy

STARK uses a dual-tier memory management system:

  • Stack-Allocated & Owned Memory - For performance-critical data (tensors, primitives)
  • Garbage-Collected Memory - For high-level objects and complex data structures

Memory Management Examples

// Stack-allocated and owned (zero-cost)
let tensor = Tensor::::zeros();  // Stack metadata, owned data
let array = [1, 2, 3, 4, 5];                       // Stack-allocated array

// Garbage-collected (managed)
let model = torch::load_model("resnet50.pt");       // GC-managed complex object
let dataset = Dataset::from_csv("data.csv");        // GC-managed with lazy loading
let cache: Map = Map::new();           // GC-managed collections

Ownership and Borrowing System

Ownership Rules

STARK follows ownership principles similar to Rust but with relaxed rules for AI/ML ergonomics:

  1. Each value has exactly one owner
  2. When the owner goes out of scope, the value is dropped
  3. There can be multiple immutable borrows OR one mutable borrow
  4. Borrows must be valid for their entire lifetime

Ownership Examples

fn ownership_example() {
    let tensor1 = Tensor::rand([1000, 1000]);
    let tensor2 = tensor1;               // Move (tensor1 is no longer valid)
    // print(tensor1.shape());          // ERROR: tensor1 moved
    print(tensor2.shape());             // OK: tensor2 owns the data
    
    let tensor3 = tensor2.clone();      // Explicit deep copy
    print(tensor2.shape());             // OK: tensor2 still owns its data
    print(tensor3.shape());             // OK: tensor3 owns separate data
}

Borrowing and References

// Immutable borrowing
fn immutable_borrows() {
    let tensor = Tensor::ones([512, 512]);
    let ref1 = &tensor;                 // Immutable borrow
    let ref2 = &tensor;                 // Multiple immutable borrows OK
    
    print(f"Shape: {ref1.shape()}");    // OK
    print(f"Device: {ref2.device()}");  // OK
    // tensor.fill_(0.0);               // ERROR: Cannot mutate while borrowed
}

// Mutable borrowing
fn mutable_borrows() {
    let mut tensor = Tensor::zeros([256, 256]);
    let ref_mut = &mut tensor;          // Mutable borrow
    // let ref2 = &tensor;              // ERROR: Cannot borrow while mutably borrowed
    
    ref_mut.fill_(1.0);                 // OK: Mutate through mutable reference
    // print(tensor.sum());             // ERROR: Cannot use tensor while borrowed
}

Garbage Collection System

Hybrid GC Design

STARK uses a generational, concurrent, low-latency garbage collector for managed objects:

GC-Managed Types

// GC-managed types (automatically allocated on GC heap)
struct Model {
    layers: Vec,           // GC-managed vector
    optimizer: Box,   // GC-managed box
    metadata: Map      // GC-managed map
}

struct Dataset {
    data_source: DataSource,     // GC-managed trait object
    transforms: Vec,  // GC-managed vector of closures
    cache: LRUCache // GC-managed cache
}

// Mixed ownership (owned data + GC references)
struct TrainingLoop {
    model: Gc,            // GC reference to model
    dataset: Gc,        // GC reference to dataset
    batch_size: i32,             // Stack-allocated primitive
    learning_rate: f32,          // Stack-allocated primitive
    current_batch: Tensor // Owned tensor data
}

GC Configuration

// GC modes for different workloads
enum GCMode {
    Throughput,      // Optimize for throughput (larger heaps, less frequent GC)
    LowLatency,      // Optimize for low latency (concurrent GC, small pauses)
    Memory,          // Optimize for memory usage (frequent GC, compact heaps)
    Training,        // Optimized for ML training (batch-aware collection)
    Inference        // Optimized for inference (predictable, low-latency)
}

// Training-specific GC integration
fn training_loop_with_gc() {
    // Configure GC for training workload
    gc::configure(GCConfig {
        mode: GCMode::Training,
        max_heap_size: Some(8 * 1024 * 1024 * 1024), // 8GB
        young_gen_size: 512 * 1024 * 1024,           // 512MB
        concurrent_threads: 4,
        pause_target: Duration::milliseconds(10),
        throughput_target: 0.95
    });
    
    for epoch in 0..100 {
        for batch in dataset.batches(batch_size) {
            // Training step with owned tensors (no GC pressure)
            let predictions = model.forward(&batch.inputs);
            let loss = loss_fn(&predictions, &batch.targets);
            
            // GC cleanup between batches
            if batch.id % 10 == 0 {
                gc::collect_young(); // Quick young generation cleanup
            }
        }
        
        // Full GC between epochs
        gc::collect();
    }
}

Memory Safety Guarantees

Compile-Time Safety Checks

The borrow checker prevents common memory errors:

  • Use after free prevention - Values cannot be used after being moved or dropped
  • Double free prevention - Values can only be dropped once
  • Dangling pointer prevention - References cannot outlive the data they reference
  • Data race prevention - Mutable access is exclusive
  • Iterator invalidation prevention - Collections cannot be modified while being iterated

Memory Safety Examples

fn memory_safety_examples() {
    // 1. Use after free prevention
    let tensor = Tensor::rand([100, 100]);
    drop(tensor);
    // print(tensor.shape());        // ERROR: tensor used after drop
    
    // 2. Double free prevention
    let tensor = Tensor::rand([100, 100]);
    drop(tensor);
    // drop(tensor);                 // ERROR: tensor already dropped
    
    // 3. Dangling pointer prevention  
    let reference: &Tensor;
    {
        let tensor = Tensor::rand([100, 100]);
        reference = &tensor;
    }
    // print(reference.shape());     // ERROR: tensor dropped, reference invalid
    
    // 4. Data race prevention
    let mut tensor = Tensor::zeros([100, 100]);
    let ref1 = &tensor;
    // let ref2 = &mut tensor;       // ERROR: cannot borrow mutably while borrowed
}

Performance Characteristics

Memory Allocation Performance

Allocation Type Performance Use Case Example
Stack allocation Fastest (microseconds) Small, fixed-size data [f32; 1024]
Owned heap allocation Fast (milliseconds) Large tensors, predictable Tensor::zeros()
GC allocation Moderate overhead Complex objects, graphs Model::new()
Arena allocation Fastest for batches Temporary batch operations with_arena()

GC Performance Tuning

// Configuration for inference workloads
gc::configure(GCConfig {
    mode: GCMode::LowLatency,
    pause_target: Duration::milliseconds(5),   // Max 5ms pauses
    concurrent_threads: 2,                     // Concurrent collection
    throughput_target: 0.99                    // 99% app throughput
});

// Configuration for training workloads
gc::configure(GCConfig {
    mode: GCMode::Training,
    pause_target: Duration::milliseconds(20),  // Can tolerate longer pauses
    concurrent_threads: 4,                     // More GC threads
    throughput_target: 0.95                    // 95% app throughput
});

Key Benefits

🚀 Performance

Zero-cost abstractions for tensor operations with predictable memory layout

🛡️ Safety

Compile-time memory safety without runtime overhead for critical paths

🧠 AI-Optimized

Hybrid system balances tensor performance with ML object graph management

⚙️ Configurable

Different GC modes for training, inference, and production workloads