Overview

STARK employs a sophisticated concurrency model combining async/await with an actor-based message passing system, optimized for AI/ML workloads.

Concurrency Philosophy

STARK's concurrency is built around:

  • Structured Concurrency - Clear hierarchical task management with automatic cleanup
  • Actor-Based Isolation - Message passing for safe concurrent state management
  • Data Parallelism - First-class support for parallel tensor operations
  • Work Stealing - Efficient load balancing across CPU cores and devices
  • Zero-Cost Abstractions - Compile-time optimization of async operations
  • ML-Optimized - Specialized primitives for training and inference workloads

High-Level Concurrency Overview

// High-level concurrency overview
async fn ml_training_pipeline() {
    // Structured concurrency with automatic cleanup
    let training_scope = async_scope! {
        // Data loading in parallel
        let data_loader = spawn_task("data", async {
            load_and_preprocess_data("train.csv").await
        });
        
        // Model initialization
        let model = spawn_task("model", async {
            create_and_initialize_model(&config).await
        });
        
        // Wait for both to complete
        let (dataset, model) = join!(data_loader, model);
        
        // Actor-based training coordinator
        let trainer = TrainingActor::new(model?, dataset?);
        trainer.start_training(epochs: 100).await
    };
    
    training_scope.await?;
}

Async/Await Execution Model

Future and Task Abstractions

// Core Future trait
trait Future {
    type Output;
    
    fn poll(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll;
}

enum Poll {
    Ready(T),
    Pending
}

// Task spawning and management
struct Task {
    id: TaskId,
    name: Option,
    future: Pin + Send>>,
    waker: Option,
    executor: ExecutorRef
}

// Task spawning functions
fn spawn(future: impl Future + Send + 'static) -> JoinHandle;
fn spawn_local(future: impl Future + 'static) -> LocalJoinHandle;
fn spawn_blocking(f: impl FnOnce() -> T + Send + 'static) -> JoinHandle;

// Named task spawning for debugging/monitoring
fn spawn_task(
    name: &str, 
    future: impl Future + Send + 'static
) -> JoinHandle;

Structured Concurrency

// Structured concurrency scope
macro_rules! async_scope {
    ($body:block) => {
        async move {
            let scope = ConcurrencyScope::new();
            let result = async move $body.await;
            scope.shutdown().await;
            result
        }
    }
}

// Join combinators
async fn join(a: impl Future, b: impl Future) -> (A, B);
async fn try_join(
    a: impl Future>, 
    b: impl Future>
) -> Result<(A, B), E>;

// Select combinators
async fn select(a: impl Future, b: impl Future) -> Either;

// Timeout and cancellation
async fn timeout(duration: Duration, future: impl Future) -> Result;

// Cancellation token for cooperative cancellation
struct CancellationToken {
    inner: Arc
}

impl CancellationToken {
    fn new() -> Self;
    fn child_token(&self) -> Self;
    
    fn cancel(&self);
    fn is_cancelled(&self) -> bool;
    async fn cancelled(&self);
    
    fn run_until_cancelled(&self, future: impl Future) -> Option;
}

Runtime Configuration

// Runtime configuration
struct RuntimeConfig {
    worker_threads: Option,
    max_blocking_threads: usize,
    thread_stack_size: Option,
    thread_name_prefix: String,
    enable_io: bool,
    enable_time: bool,
    enable_metrics: bool,
    scheduler: SchedulerType
}

enum SchedulerType {
    WorkStealing,
    FIFO,
    Custom(Box)
}

// Runtime execution
struct Runtime {
    config: RuntimeConfig,
    executor: Arc
}

impl Runtime {
    fn new() -> Self {
        RuntimeBuilder::new().build()
    }
    
    fn block_on(&self, future: impl Future) -> T;
    fn spawn(&self, future: impl Future + Send + 'static) -> JoinHandle;
    fn spawn_blocking(&self, f: impl FnOnce() -> T + Send + 'static) -> JoinHandle;
    
    async fn shutdown(self);
    fn metrics(&self) -> RuntimeMetrics;
}

Actor System Implementation

Actor Trait and Lifecycle

// Core Actor trait
trait Actor {
    type Message: Send + 'static;
    type Error: std::error::Error + Send + Sync + 'static;
    
    // Actor initialization
    async fn started(&mut self) -> Result<(), Self::Error> { Ok(()) }
    
    // Handle incoming messages
    async fn handle_message(&mut self, message: Self::Message) -> Result<(), Self::Error>;
    
    // Actor cleanup
    async fn stopped(&mut self) -> Result<(), Self::Error> { Ok(()) }
    
    // Error handling
    async fn handle_error(&mut self, error: Self::Error) -> ErrorAction {
        ErrorAction::Stop
    }
}

enum ErrorAction {
    Continue,   // Continue processing messages
    Restart,    // Restart the actor
    Stop        // Stop the actor
}

// Actor reference for sending messages
struct ActorRef {
    id: ActorId,
    sender: mpsc::UnboundedSender,
    system: WeakActorSystem
}

impl ActorRef {
    async fn send(&self, message: M) -> Result<(), SendError>;
    fn try_send(&self, message: M) -> Result<(), TrySendError>;
    async fn ask(&self, message: impl FnOnce(oneshot::Sender) -> M) -> Result;
    
    fn id(&self) -> ActorId;
    fn is_alive(&self) -> bool;
    async fn stop(&self);
}

Message Passing Protocols

// Request-Response pattern
struct Request {
    data: T,
    reply_to: oneshot::Sender
}

impl Request {
    fn new(data: T) -> (Self, oneshot::Receiver) {
        let (tx, rx) = oneshot::channel();
        (Request { data, reply_to: tx }, rx)
    }
    
    fn respond(self, response: R) {
        let _ = self.reply_to.send(response);
    }
}

// Event pattern (fire-and-forget)
struct Event {
    data: T,
    timestamp: Instant,
    source: ActorId
}

// Command pattern
struct Command {
    data: T,
    correlation_id: Option
}

// Publish-Subscribe messaging
struct EventBus {
    subscribers: HashMap>>>
}

impl EventBus {
    fn new() -> Self;
    
    fn subscribe(&mut self, subscriber: ActorRef);
    fn unsubscribe(&mut self, subscriber: &ActorRef);
    fn publish(&self, event: T);
}

Supervision and Fault Tolerance

// Supervisor strategies
enum SupervisionStrategy {
    OneForOne,      // Restart only the failed actor
    OneForAll,      // Restart all children when one fails
    RestForOne,     // Restart failed actor and all actors started after it
    Custom(Box)
}

enum SupervisorAction {
    Restart,
    Stop,
    Escalate,
    Ignore
}

// Supervisor configuration
struct SupervisorConfig {
    strategy: SupervisionStrategy,
    max_restarts: u32,
    restart_window: Duration,
    backoff_strategy: BackoffStrategy
}

enum BackoffStrategy {
    None,
    Linear { initial: Duration, increment: Duration, max: Duration },
    Exponential { initial: Duration, factor: f64, max: Duration },
    Custom(Box Duration + Send + Sync>)
}

// Circuit breaker for actor communication
struct ActorCircuitBreaker {
    failure_threshold: u32,
    success_threshold: u32,
    timeout: Duration,
    state: CircuitState,
    failure_count: u32,
    last_failure: Option
}

ML-Specific Concurrency Patterns

Data Parallel Processing

// Parallel data processing for ML workloads
struct DataParallel {
    data: Vec,
    chunk_size: usize,
    num_workers: usize
}

impl DataParallel {
    fn new(data: Vec) -> Self;
    fn with_chunk_size(mut self, size: usize) -> Self;
    fn with_workers(mut self, workers: usize) -> Self;
    
    async fn map(self, f: F) -> Vec 
    where 
        U: Send + 'static,
        F: Fn(T) -> U + Send + Sync + 'static;
        
    async fn map_async(self, f: F) -> Vec
    where
        U: Send + 'static,
        F: Fn(T) -> Fut + Send + Sync + 'static,
        Fut: Future + Send;
}

// Tensor-aware parallel operations
trait TensorParallel {
    async fn parallel_apply(&self, f: F) -> Self
    where 
        F: Fn(&[T]) -> Vec + Send + Sync + 'static;
        
    async fn parallel_map_chunks(&self, chunk_size: usize, f: F) -> Tensor
    where
        F: Fn(&[T]) -> Vec + Send + Sync + 'static,
        U: Send + Sync + 'static;
}

Training Pipeline Coordination

// Training coordinator actor
struct TrainingCoordinator {
    model: Model,
    optimizer: Optimizer,
    dataset: Arc,
    config: TrainingConfig,
    metrics: TrainingMetrics,
    workers: Vec>,
    epoch: u32,
    global_step: u64
}

impl Actor for TrainingCoordinator {
    type Message = TrainingMessage;
    type Error = TrainingError;
    
    async fn handle_message(&mut self, message: TrainingMessage) -> Result<(), TrainingError> {
        match message {
            TrainingMessage::StartEpoch { epoch } => {
                self.start_epoch(epoch).await
            }
            TrainingMessage::BatchCompleted { worker_id, batch_id, gradients, metrics } => {
                self.aggregate_gradients(worker_id, batch_id, gradients, metrics).await
            }
            TrainingMessage::EpochCompleted { epoch, metrics } => {
                self.finish_epoch(epoch, metrics).await
            }
        }
    }
}

// Training worker actor
struct TrainingWorker {
    worker_id: usize,
    model: Model,
    dataset: Arc,
    coordinator: ActorRef,
    current_batch: Option
}

// Distributed training coordination
struct DistributedTrainer {
    world_size: usize,
    rank: usize,
    coordinator: ActorRef,
    all_reduce_group: CommunicationGroup
}

enum DistributedMessage {
    AllReduce { tensors: Vec, reply_to: oneshot::Sender> },
    AllGather { tensor: Tensor, reply_to: oneshot::Sender> },
    Broadcast { tensor: Tensor, root: usize, reply_to: oneshot::Sender },
    Barrier { reply_to: oneshot::Sender<()> }
}

Inference Pipeline

// Inference server actor
struct InferenceServer {
    model: Arc,
    batch_processor: BatchProcessor,
    request_queue: ActorRef>,
    response_router: ActorRef,
    metrics: InferenceMetrics
}

// Request batching actor
struct BatchingActor {
    max_batch_size: usize,
    max_wait_time: Duration,
    pending_requests: Vec,
    batch_timer: Option,
    processor: ActorRef
}

// Load balancing actor
struct LoadBalancer {
    workers: Vec>,
    strategy: LoadBalancingStrategy,
    health_checker: ActorRef,
    metrics: LoadBalancerMetrics
}

enum LoadBalancingStrategy {
    RoundRobin,
    LeastConnections,
    WeightedRoundRobin { weights: Vec },
    ConsistentHashing,
    Custom(Box usize + Send + Sync>)
}

Key Benefits

🏗️ Structured Concurrency

Hierarchical task management with automatic cleanup and resource management

🛡️ Actor Isolation

Message passing for safe concurrent state management without data races

⚡ Work Stealing

Efficient load balancing and task scheduling across CPU cores and devices

🤖 ML-Optimized

Specialized patterns for data/model parallelism and distributed training

🔧 Fault Tolerance

Supervision strategies, circuit breakers, and error recovery mechanisms

📊 Production Ready

Load balancing, monitoring integration, and performance metrics